您好,欢迎您来到学点点!
400-678-6991 点击这里给我发消息王老师 点击这里给我发消息丁老师
详细内容
疑难解答:
学员在学习中遇到问题,在这里能得到及时的解决。有问题随时提问,老师解答及时,不留学习盲点。有不懂的题目问老师,逐渐养成独立解决问题的能力。
年级 科目 问题描述 提问时间
初二 数学 数学 2014-09-27 11:46:11
如图,△ABC是等边三角形,在△BCD中,BD=CD,∠BDC=120°,以点D为顶点作∠MDN=60°,其中DM交AB于点M,DN交AC于点N,连接MN,试说明MN=BM+CN
余雯馨老师 2014-09-27 14:00:37
延长AC至E,使得CE=BM(或延长AB至E,使得BE=CN),并连接DE,如图1所示:
∵△BDC为等腰三角形,△ABC为等边三角形,
∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,
又BD=DC,且∠BDC=120°,
∴∠DBC=∠DCB=30°,
∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,
∴∠MBD=∠ECD=90°,
在△MBD与△ECD中,

BD=CD
∠MBD=∠ECD
CE=BM

∴△MBD≌△ECD(SAS),
∴MD=DE,∠BDM=∠CDE,
∵∠MDN=60°,∠BDC=120°,
∴∠BDM+∠CDN=60°,
∴∠CDE+∠CDN=60°,即∠EDN=60°,
∴∠EDN=∠MDN,
在△DMN和△DEN中,

ND=ND
∠EDN=∠MDN
MD=ED

∴△DMN≌△DEN(SAS),
∴MN=EN=NC+CE=BM+NC;

该问题已结帖
学点点,全国统一客服热线:400-678-6991 客服邮箱:E-mail:xueku51@163.com
版权所有 学点点 Copyright 2015 www.51xuedd.com All rights reserved  ICP证:浙ICP备2023042842号