年级 | 科目 | 问题描述 | 提问时间 |
初一 | 数学 | 数学 | 2014-07-30 14:00:29 |
计算:1/x(x+1)加上1/x(x+1)(x+2)加上······加上1/(x+4)(x+5) | |||
学点点闵老师 2014-07-30 14:06:58 | |||
=1/x-1/(x+1)+1/(x+1)-1/(x-2)+....+1/(x+4)-1/(x+5) =1/x-1/(x+5) =5/x(x+2013) 此方法为拆分法,即把分式分解成两个分式 | |||
王老师 2014-07-30 14:11:30 | |||
因为1/X(X+1)=1/X-1/(X+1) 所以依次类推 1/X(X+1)+1/(X+1)(X+2)+...+1/(X+4)(X+5) 1/(X+1)+1/(X+1)-1/(X+2)...+1/(X+4)-1/(X+5)原式=1/X-1/(X+1)+1/(X+1)-1/(X+2)+...+1/(X+4)-1/(X+5) =1/X-1/(X+5) =5/X(X+5) | |||
学点点闵老师 2014-07-30 14:15:38 | |||
最后答案应该是5/(x+5)x 不好意思啊,又粗心了 |