您好,欢迎您来到学点点!
400-678-6991 点击这里给我发消息王老师 点击这里给我发消息丁老师
详细内容
疑难解答:
学员在学习中遇到问题,在这里能得到及时的解决。有问题随时提问,老师解答及时,不留学习盲点。有不懂的题目问老师,逐渐养成独立解决问题的能力。
年级 科目 问题描述 提问时间
初三 数学 数学一题关于二次函数的应用 2017-09-09 19:04:18

如图,在第一象限内作射线OC,与x轴的夹角为30o,在射线OC上取一点A,过点A作AH⊥x轴于点H。在抛物线y=x2  (x>0)上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是                     .

6ec8aac122bd4f6e

学点点顾老师 2017-09-09 19:07:18
学点点顾老师 2017-09-09 19:07:32
姚婷 2017-09-09 19:12:07
①∠POQ=∠OAH=60°,此时A、P重合,可联立直线OA和抛物线的解析式,即可得A点坐标;
②∠POQ=∠AOH=30°,此时∠POH=60°,即直线OP:y= x,联立抛物线的解析式可得P点坐标,进而可求出OQ、PQ的长,由于△POQ≌△AOH,那么OH=OQ、AH=PQ,由此得到点A的坐标.
③当∠OPQ=90°,∠POQ=∠AOH=30°时,此时△QOP≌△AOH;
④当∠OPQ=90°,∠POQ=∠OAH=60°,此时△OQP≌△AOH;

解答:

解:①当∠POQ=∠OAH=60°,若以P,O,Q为顶点的三角形与△AOH全等,那么A、P重合;

由于∠AOH=30°,
所以直线OA:y=x,联立抛物线的解析式,
得:
解得
故A();
②当∠POQ=∠AOH=30°,此时△POQ≌△AOH;

易知∠POH=60°,则直线OP:y=x,联立抛物线的解析式,
得:
解得
故P(,3),那么A(3,);
③当∠OPQ=90°,∠POQ=∠AOH=30°时,此时△QOP≌△AOH;

易知∠POH=60°,则直线OP:y=x,联立抛物线的解析式,
得:
解得;,
故P(,3),
∴OP=2,QP=2,
∴OH=OP=2,AH=QP=2,
故A(2,2);
④当∠OPQ=90°,∠POQ=∠OAH=60°,此时△OQP≌△AOH;

此时直线OP:y=
 
3

3
x,联立抛物线的解析式,
得:
解得解得
∴P(),
∴QP=,OP=
∴OH=QP,QP=,AH=OP=
故A().
综上可知:符合条件的点A有四个,且坐标为:则符合条件的点A的坐标是()()(3,)(2,2).
该问题已结帖
学点点,全国统一客服热线:400-678-6991 客服邮箱:E-mail:xueku51@163.com
版权所有 学点点 Copyright 2015 www.51xuedd.com All rights reserved  ICP证:浙ICP备2023042842号